
Discrete Mathematics
Prof. Ashish Choudhry

IIIT, Bangalore

Module No # 08
Lecture No # 38
Tutorial 6: Part II

Hello everyone, welcome to the second part of tutorial 6.

(Refer Slide Time: 00:24)

Let us start with question number 8. You are given here arbitrary distinct points in 2 dimensional

planes. Each point will have an x-coordinate, y-coordinate and the points are having integer

coordinates. So they are arbitrary points except that they are distinct. So, I am denoting the points,

their respective coordinates as !,!, ",", #,#, $,$ and %,%. And our goal is to show that

irrespective of the way these 5 points are chosen arbitrarily they are always exist a pair of points

such that if you consider the midpoint of the line joining those 2 points it has integer coordinates.

So just to recap if you have 2 points, a point with coordinates (!, !) and another point with

coordinates (", ") then the midpoint of the line joining these 2 points is given by the formula

&!'&"
"

, (!'("
"
. And we want to apply here pigeonhole principle. So remember for pigeonhole

principle we have to identify the set of pigeons and the set of holes here and then the mapping

which relates the pigeon and the holes.
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So let us do that. So consider the set of 5 arbitrary points which are all distinct and have integer

coordinates. We are trying to map this point depending upon what is the nature of their x-

coordinate and y-coordinate. So depending upon whether the x-coordinate is even, or x-coordinate

are odd, or whether the y-coordinate is odd, or the y coordinate is even, I have 4 possible

combinations.

And my function  maps these 5 points to the corresponding pair; say if ! is odd and ! is even

then I will say that (!,!) is (odd, even) and so on. That is the mapping here. So now, it follows

from pigeonhole principle that we have now 5 items here in the set  and 4 items in the set  then

there always exist a pair of points among these 5 points say () ,)) and * ,* such that both of

them are mapped to the same ordered pair.

So it could be any 2 out of those 5 points; it could be the first 2 points, it could be the last 2 points,

it could be the third point or the fourth point and so on; we do not know. It depends upon the exact

5 points that we chose. So, without loss of generality assume that out of those 2 points which are

guaranteed to be mapped to the same ordered pair are the first 2 points.

So say (!,!) and (",") be the 2 points such that the corresponding  output of the  function

for these points are the same. Now we want to inspect what happens to the midpoint of the line

joining these 2 points  and . So as per the formula the midpoint of the lines joining these 2

points  and  will be +!'+"
"

, ,!',"
"
.

And since both the points  and  are mapped to the same ordered pair; so for instance it could be

the case that both ! as well as " are odd or it could be the case that both ! as well as " are

even. So irrespective of the case ! + " will always be divisible by 2. If both of them are even

definitely sum of 2 even quantities is divisible by 2. Whereas if both of them are odd then also the

sum of 2 odd quantities is divisible by 2. And as per our assumption it is not the case that ! is odd

and " is even that is not the case because we are considering the case when the output of the

 function on these 2 points  and  are the same.
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In the same way we cannot have the case where ! is even and " is odd because that is not the

property of the point  and . Due to the exactly the same reason, the type of ! and " coordinates

are the same. Either they are both odd or both of them are even right. And again in this case it is

easy to see that ! + " will be divisible by 2. And that shows that this statement is a correct

statement.

(Refer Slide Time: 05:22)

So let us go to question number 9. Here you are given the following. You are choosing 5 integers

from the set 1 to 8 arbitrarily. Our goal is to show irrespective of the way you choose those 5 points

there always exists at least one pair of integers among those chosen 5 integers whose sum is 9. So

say you pick 1, 2 and 5 and then if you pick 3 then you still do not have any pair of integers whose

sum is 9. But as soon as you pick the fourth point, so if you pick 4 that is the fifth number then

you have 5 and 4 which is summing up to 9.

If you pick 6 as the fifth number, then you have 3 and 6 summing up to 9. If you have if you pick

7 as the fifth number, then you have 7 and 2 summing up to 9. If you pick 8 as the fifth number,

then you have 1 and 8 summing up to 9 and so on. So you can verify this by an example but we

want to prove it irrespective of the 5 numbers that we are going to pick.

So one way of proving this is that you take all possible 8 choose 5 ways of picking 5 numbers and

for each of those combinations you show that the statement is true but that will be an overkill

because this is a relatively large value. Instead we will apply the pigeonhole principle and again
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for applying the pigeonhole principle we have to identify the pigeons and the holes and the

mapping. So my pigeons here are the 5 integers among the numbers 1 to 8 that I am picking

arbitrarily and my holes are the ordered pairs of distinct integers in the set 1 to 8 whose sum will

give you 9.

So you have either the ordered pair (1, 8) or the ordered pair (2, 7) or ordered pair (3, 6) or the

ordered pair (4, 5). And you do not have any other ordered pair from the set 1 to 8 summing up to

9. And my function  basically maps these ) values to the corresponding ordered pair depending

upon whether ! is 1 or 8 I will say that (!) is either (1,8). Or if ! takes either the value of 2

or the value of 7 then I will say (!) is (2, 7).

Or if my ! is either 3 or 6 then I will say that (!) is (3, 6) or if my ! is either 4 or ! is either

5 then I will say that (!) is (4, 5). That is the interpretation for my mapping .

(Refer Slide Time: 08:51)

Now it follows simply from pigeon-hole principle that there always exists a pair or two values out

of the 5 numbers say ) , * such that ()) and * are the same. It could be say the first 2

values, the last 2 values, the second or the third value, the third or the fourth value, or the first

value or the fifth value; it could be any 2 values out of those 5 numbers.

(Refer Slide Time: 09:24)
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We do not know which one. So again without loss of generality, suppose both of them got mapped

to (1, 8); we do not know what is the identity of ) or * and we do not know the corresponding

mapping as well. It could be either (1, 8), (2, 7), (3, 6) or (4, 5). So, without loss of generality; that

means whatever reasoning we are giving here for the case where ()) = * = (1,8) hold, the

same argument will hold even if ()) is same as * is equal to say (2, 7); the same reasoning

will hold symmetrically for that case as well.

Symmetrically for the case when it is (4, 5), symmetrically for the case when it is (3, 6) and so on.

So that is why we do not consider the remaining 3 cases. We just consider the case when ())

and * is (1, 8).

(Refer Slide Time: 10:21)
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If that is the case then since your ) and * are distinct and they got mapped to (1, 8) that means

either ) is 1 and * is 8 or ) is 8 and * is 1. Irrespective of the case, the sum of ) and * is 9. So

now you can see that even without enumerating all possible (8,5) arrangements or combinations

of picking 5 numbers out of these 8 numbers we ended up arguing in a very simple fashion that

our statement is true using pigeonhole principle. It shows the power of this proof strategy or

counting mechanism basically.

(Refer Slide Time: 11:07)

So question 10 we want to prove a universally quantified statement. Namely, we want to prove

that you take any integer , there is always a multiple of  which has only the digits 0’s and 1’s in
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its decimal expansion. So before going into the proof if you want to take few examples say  = 1

then I always have the number 1 which is a multiple of 1 and which has only the digit 1 in its

decimal expansion.

Remember it is not mandatory that you have both 0’s as well as 1 in the decimal expansion. The

only restriction is we have to show that in the decimal expansion you only have either the digits

0’s or 1’s. If you take  = 2 then I can take the number 10 which is a multiple of 2 and which

has only 1’s and 0’s and in its decimal expansion. If I take  = 3 then I can take the number 111

which has only the digit 1 in its decimal expansion and which is divisible by 3.

So at least by taking few examples we found that the statement is true. But this is a universally

quantified statement and we cannot prove a universally quantified statement just showing

examples for a few cases. So we have to give the proof for arbitrary . Again, we are going to

apply here pigeonhole principle. So let me define a few decimal numbers here.

I define the first decimal number to be 1. I define second decimal number as 11, the i-th decimal

number as a decimal number consisting of  number of 1’s and the  + 1 decimal number which

has the digit 1,  + 1 number of times. Let me define another set of values. So my value ! is the

remainder which I obtain by dividing ! by . Similarly, I define " to be the remainder obtained

by dividing " by . I define ) to be the remainder obtained by dividing ) by .

And in the same way I define -'! as the remainder obtained by dividing -'! by . Now what

can I say about this remainders? It is easy to see that these remainders belong to the set 0 to  − 1

because of the simple fact that you divide any number by n the only possible remainders could be

0 if it is completely divisible by  or the remainders could be 1, 2 …  − 1. Now you have to

apply the pigeonhole principle.

So my pigeons are the numbers ! to -'! that I have constructed here. And my holes are basically

the remainders which I can obtain by dividing these  + 1 numbers by . And I have  possible

remainders and my function  map the numbers to the corresponding remainder which I have

obtained by dividing that number by . So you have more number of numbers and less number of

remainders.
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So it follows from the pigeonhole principle that you always have a pair of numbers ) and * out

of this  + 1 numbers which gives you the same remainder if you divide ) and * by . I do not

know the remainder it could be either 0, or the remainder could be either 1, or the remainder could

be  − 1.

I do not know what are the individual remainders that ) and * are going to give on dividing by

. But what I know is that they are leaving the same remainder. And again without loss of

generality assume that ) is occurring before * in my sequence here. Now what can I say about

this number *–). So * will be a number which has  number of 1’s and ) is another number

which has  number of 1’s. Both of them gives me the same reminder on dividing by .

So if I take *–)then this will be a decimal number which will have trailing 0’s and then at the

leading positions you will have the 1’s. That means it is a decimal number which has only the

characters 1s and 0’s. But what can you say about its divisibility by . This number will be divisible

completely by  because * gives you the same remainder, say , so I can say * is some * ∗  +

 and ) also gives me the same remainder , so I can write ) as some ) ∗  + .

Then if I take *–) the effect of  cancels out and I get that its completely now a multiple of .

So, I showed you constructively here that irrespective of what is your , I can always give you a

number which is divisible by  and which has only 1’s and 0’s in its decimal expansion right.

(Refer Slide Time: 17:02)
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